Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 655
Filtrar
1.
Neuroscience Bulletin ; (6): 1-16, 2024.
Artículo en Inglés | WPRIM | ID: wpr-1010677

RESUMEN

Astrocytes are the largest glial population in the mammalian brain. However, we have a minimal understanding of astrocyte development, especially fate specification in different regions of the brain. Through lineage tracing of the progenitors of the third ventricle (3V) wall via in-utero electroporation in the embryonic mouse brain, we show the fate specification and migration pattern of astrocytes derived from radial glia along the 3V wall. Unexpectedly, radial glia located in different regions along the 3V wall of the diencephalon produce distinct cell types: radial glia in the upper region produce astrocytes and those in the lower region produce neurons in the diencephalon. With genetic fate mapping analysis, we reveal that the first population of astrocytes appears along the zona incerta in the diencephalon. Astrogenesis occurs at an early time point in the dorsal region relative to that in the ventral region of the developing diencephalon. With transcriptomic analysis of the region-specific 3V wall and lateral ventricle (LV) wall, we identified cohorts of differentially-expressed genes in the dorsal 3V wall compared to the ventral 3V wall and LV wall that may regulate astrogenesis in the dorsal diencephalon. Together, these results demonstrate that the generation of astrocytes shows a spatiotemporal pattern in the developing mouse diencephalon.


Asunto(s)
Ratones , Animales , Astrocitos , Neuroglía/fisiología , Diencéfalo , Encéfalo , Neuronas , Mamíferos
2.
Acta neurol. colomb ; 39(2)jun. 2023.
Artículo en Español | LILACS | ID: biblio-1533492

RESUMEN

Introducción: El sistema glinfático comprende el conjunto de rutas perivasculares tanto arteriales como venosas que se encuentran en estrecha asociación con células astrogliales y que permiten la interacción entre el líquido cefalorraquídeo (LCR) y el líquido intersticial cerebral (LIC), para llevar a cabo procesos como la depuración de los metabolitos de desecho celular, o la distribución de nutrientes, así como contribuir al metabolismo cerebral local, la transmisión de volumen y la señalización paracrina cerebral. Contenidos: Este artículo busca profundizar en los conceptos anatómicos y fisiológicos, hasta el momento descritos, sobre este sistema macroscópico de transporte. Se realiza una búsqueda bibliográfica de revisiones y estudios experimentales sobre la anatomía, la fisiología y las implicaciones fisiopatológicas del sistema glinfático. Conclusiones: La identificación anatómica y funcional del sistema glinfático ha ampliado el conocimiento sobre la regulación del metabolismo cerebral en cuanto a distribución de nutrientes y cascadas de señalización celular. Al establecer una interacción entre el espacio subaracnoideo subyacente y el espacio intersticial cerebral, el sistema glinfático surge como uno de los mecanismos protagonistas de la homeostasis cerebral. La disfunción de esta vía hace parte de los mecanismos fisiopatológicos de múltiples trastornos neurológicos, ya sea por la acumulación de macromoléculas, como ocurre en la enfermedad de Alzheimer, o por la reducción del drenaje de sustancias químicas y citocinas proinflamatorias en patologías como la migraña o el trauma craneoencefálico.


Introduction: The glympathic system comprises the set of perivascular routes, arterials or venous, that are found in close relationship with astroglial cells and allow interaction between the cerebrospinal fluid (CSF) and the interstitial brain fluid (ISF), to carry processes like cell-wasting metabolites depuration, nutrients distribution, as well as make a contribution in the local brain metabolism, volumen transmition and brain paracrine signaling. Contents: This article seeks to deepen in the anatomical and physiological concepts, so far described, about this macroscopic transport system. A bibliographic search of reviews and experimental studies on the anatomy, physiology and pathophysiological implications of the glymphatic system is carried out. Conclusions: Anatomical and functional identification of glympathic system has broaden the knowledge about regulation of brain metabolism on the nutrients distribution and cell signaling cascades. When setting an interaction between the subarachnoid space and the brain interstitial space, the glymphatic system arise as one of the leading mechanisms of brain homeostasis. Disfunction of this pathway makes part of the patophysiological mechanisms of multiple neurological disease, either be by collection of macromolecules as in Alzheimer's disease, or by the reduction of inflammatory cytokines and chemical substances drainage as in migraine or traumatic brain injury (TBI).


Asunto(s)
Líquido Cefalorraquídeo , Acuaporina 4 , Sistema Glinfático , Astrocitos , Homeostasis
3.
China Journal of Chinese Materia Medica ; (24): 5830-5837, 2023.
Artículo en Chino | WPRIM | ID: wpr-1008781

RESUMEN

This study investigated the effect of Xiaoxuming Decoction(XXMD) on the activation of astrocytes after cerebral ischemia/reperfusion(I/R) injury. The model of cerebral IR injury was established using the middle cerebral artery occlusion method. Fluorocitrate(FC), an inhibitor of astrocyte activation, was applied to inhibit astrocyte activation. Rats were randomly divided into a sham group, a model group, a XXMD group, a XXMD+FC group, and a XXMD+Vehicle group. Neurobehavioral changes at 24 hours after cerebral IR injury, cerebral infarction, histopathological changes observed through HE staining, submicroscopic structure of astrocytes observed through transmission electron microscopy, fluorescence intensity of glial fibrillary acidic protein(GFAP) and thrombospondin 1(TSP1) measured through immunofluorescence, and expression of GFAP and TSP1 in brain tissue measured through Western blot were evaluated in rats from each group. The experimental results showed that neurobehavioral scores and cerebral infarct area significantly increased in the model group. The XXMD group, the XXMD+FC group, and the XXMD+Vehicle group all alleviated neurobehavioral changes in rats. The pathological changes in the brain were evident in the model group, while the XXMD group, the XXMD+FC group, and the XXMD+Vehicle group exhibited milder cerebral IR injury in rats. The submicroscopic structure of astrocytes in the model group showed significant swelling, whereas the XXMD group, the XXMD+FC group, and XXMD+Vehicle group protected the submicroscopic structure of astrocytes. The fluorescence intensity and protein expression of GFAP and TSP1 increased in the model group compared with those in the sham group. However, the XXMD group, the XXMD+FC group, and XXMD+Vehicle group all down-regulated the expression of GFAP and TSP1. The combination of XXMD and FC showed a more pronounced effect. These results indicate that XXMD can improve cerebral IR injury, possibly by inhibiting astrocyte activation and down-regulating the expression of GFAP and TSP1.


Asunto(s)
Ratas , Animales , Astrocitos , Isquemia Encefálica/metabolismo , Encéfalo , Daño por Reperfusión/metabolismo , Infarto de la Arteria Cerebral Media
4.
Chinese Journal of Biotechnology ; (12): 4234-4245, 2023.
Artículo en Chino | WPRIM | ID: wpr-1008023

RESUMEN

The aim of this study was to investigate the growth characteristics of primarily cultured astrocytes and microglia of different generations and then optimize the method for obtaining primary astrocytes and microglia effectively. Primarily cultured microglia were isolated and purified from the cortices of neonatal mice. The proliferation curve of mixed glia cells was measured by Cell Counting Kit-8 (CCK-8) assay, the proportion of astrocytes and microglia was detected by flow cytometry, and the polarization of the two types of glia cells was identified by immunofluorescence staining. Cell growth results showed that the mixed glia cells of P0 and P1 generation had the best proliferative activity; 97.3% of the high purity microglia could be obtained by mechanical shaking at 170 r/min for 30 min, and there was no significant difference in the morphology of ionized calcium-binding adapter molecule 1 (Iba-1) positive microglia and the proportion of M1 and M2 phenotype among the P0, P1 and P2 generations of microglia isolated by the above methods. Moreover, 95.7 % of the high purity astrocytes could be obtained by astrocyte cell surface antigen-2 (ACSA-2) magnetic beads separation, and there was no significant difference in the morphology of glial fibrillary acidic protein (GFAP) positive astrocyte and the proportion of A1 and A2 phenotype among the P0, P1 and P2 generations of astrocyte isolated by the above methods. Taken together, this study observed the growth characteristics of primarily cultured microglia and astrocyte in vitro, and then proved the best generations for purifying microglia and astrocytes. Finally, we optimized the methods of obtaining microglia and astrocyte, and verified that continuous culture within 2 generations will not affect the functional phenotypes of glia cells. These results provide technical support for studying the molecular mechanism of inflammation-associated diseases in nervous system.


Asunto(s)
Ratones , Animales , Astrocitos/metabolismo , Microglía/metabolismo , Recuento de Células , Citometría de Flujo/métodos , Proliferación Celular , Células Cultivadas
5.
Chinese Journal of Contemporary Pediatrics ; (12): 67-72, 2023.
Artículo en Chino | WPRIM | ID: wpr-971041

RESUMEN

OBJECTIVES@#To study the clinical features of children with autoimmune glial fibrillary acidic protein astrocytopathy (GFAP-A).@*METHODS@#A retrospective analysis was performed on the medical data of 34 children with GFAP-A who attended the Department of Neurology, Children's Hospital of Chongqing Medical University, from January 2020 to February 2022. The medical data included clinical manifestations, cerebrospinal fluid features, imaging examination results, treatment, and prognosis.@*RESULTS@#The median age of onset was 8.4 (range 1.9-14.9) years for the 34 children with GFAP-A. The main clinical manifestations included headache (50%, 17/34), fever (47%, 16/34), visual impairment (47%, 16/34), and disturbance of consciousness (44%, 15/34). Abnormal cerebrospinal fluid results were observed in 19 children (56%, 19/34), among whom 8 children had positive autoantibody. The children with overlap syndrome had significantly higher recurrence rate and rate of use of immunosuppressant than those without overlap syndrome (P<0.05). About 77% (24/31) of the children had good response to immunotherapy, and only 1 child had poor prognosis.@*CONCLUSIONS@#Children with GFAP-A often have non-specific clinical symptoms and show good response to immunotherapy. Children with overlap syndrome have a high recurrence rate, and early application of immunosuppressants may help to prevent recurrence and alleviate symptoms.


Asunto(s)
Adolescente , Niño , Preescolar , Humanos , Lactante , Astrocitos/metabolismo , Autoanticuerpos/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Pronóstico , Estudios Retrospectivos , Enfermedades Autoinmunes/metabolismo
6.
Neuroscience Bulletin ; (6): 409-424, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971584

RESUMEN

For decades, memory research has centered on the role of neurons, which do not function in isolation. However, astrocytes play important roles in regulating neuronal recruitment and function at the local and network levels, forming the basis for information processing as well as memory formation and storage. In this review, we discuss the role of astrocytes in memory functions and their cellular underpinnings at multiple time points. We summarize important breakthroughs and controversies in the field as well as potential avenues to further illuminate the role of astrocytes in memory processes.


Asunto(s)
Astrocitos , Plasticidad Neuronal/fisiología , Memoria/fisiología , Neuronas/fisiología , Cognición/fisiología
7.
Neuroscience Bulletin ; (6): 531-540, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971577

RESUMEN

Glial cells, consisting of astrocytes, oligodendrocyte lineage cells, and microglia, account for >50% of the total number of cells in the mammalian brain. They play key roles in the modulation of various brain activities under physiological and pathological conditions. Although the typical morphological features and characteristic functions of these cells are well described, the organization of interconnections of the different glial cell populations and their impact on the healthy and diseased brain is not completely understood. Understanding these processes remains a profound challenge. Accumulating evidence suggests that glial cells can form highly complex interconnections with each other. The astroglial network has been well described. Oligodendrocytes and microglia may also contribute to the formation of glial networks under various circumstances. In this review, we discuss the structure and function of glial networks and their pathological relevance to central nervous system diseases. We also highlight opportunities for future research on the glial connectome.


Asunto(s)
Animales , Neuroglía/fisiología , Neuronas/fisiología , Astrocitos , Microglía/fisiología , Oligodendroglía , Mamíferos
8.
Neuroscience Bulletin ; (6): 519-530, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971575

RESUMEN

Cerebral small vessel disease (CSVD) is one of the most prevalent pathologic processes affecting 5% of people over 50 years of age and contributing to 45% of dementia cases. Increasing evidence has demonstrated the pathological roles of chronic hypoperfusion, impaired cerebral vascular reactivity, and leakage of the blood-brain barrier in CSVD. However, the pathogenesis of CSVD remains elusive thus far, and no radical treatment has been developed. NG2 glia, also known as oligodendrocyte precursor cells, are the fourth type of glial cell in addition to astrocytes, microglia, and oligodendrocytes in the mammalian central nervous system. Many novel functions for NG2 glia in physiological and pathological states have recently been revealed. In this review, we discuss the role of NG2 glia in CSVD and the underlying mechanisms.


Asunto(s)
Animales , Neuroglía/metabolismo , Sistema Nervioso Central/metabolismo , Astrocitos/metabolismo , Oligodendroglía/metabolismo , Enfermedades de los Pequeños Vasos Cerebrales/metabolismo , Antígenos/metabolismo , Mamíferos/metabolismo
9.
Neuroscience Bulletin ; (6): 425-439, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971574

RESUMEN

Chronic pain is challenging to treat due to the limited therapeutic options and adverse side-effects of therapies. Astrocytes are the most abundant glial cells in the central nervous system and play important roles in different pathological conditions, including chronic pain. Astrocytes regulate nociceptive synaptic transmission and network function via neuron-glia and glia-glia interactions to exaggerate pain signals under chronic pain conditions. It is also becoming clear that astrocytes play active roles in brain regions important for the emotional and memory-related aspects of chronic pain. Therefore, this review presents our current understanding of the roles of astrocytes in chronic pain, how they regulate nociceptive responses, and their cellular and molecular mechanisms of action.


Asunto(s)
Humanos , Astrocitos/patología , Dolor Crónico/patología , Neuroglía/fisiología , Neuronas/fisiología , Transmisión Sináptica , Enfermedad Crónica
10.
Neuroscience Bulletin ; (6): 541-552, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971571

RESUMEN

Astrocytes (ASTs) and oligodendroglial lineage cells (OLGs) are major macroglial cells in the central nervous system. ASTs communicate with each other through connexin (Cx) and Cx-based network structures, both of which allow for quick transport of nutrients and signals. Moreover, ASTs interact with OLGs through connexin (Cx)-mediated networks to modulate various physiological processes in the brain. In this article, following a brief description of the infrastructural basis of the glial networks and exocrine factors by which ASTs and OLGs may crosstalk, we focus on recapitulating how the interactions between these two types of glial cells modulate myelination, and how the AST-OLG interactions are involved in protecting the integrity of the blood-brain barrier (BBB) and regulating synaptogenesis and neural activity. Recent studies further suggest that AST-OLG interactions are associated with myelin-related diseases, such as multiple sclerosis. A better understanding of the regulatory mechanisms underlying AST-OLG interactions may inspire the development of novel therapeutic strategies for related brain diseases.


Asunto(s)
Humanos , Vaina de Mielina , Astrocitos , Oligodendroglía , Encéfalo , Encefalopatías
11.
Neuroscience Bulletin ; (6): 379-392, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971559

RESUMEN

Glial cells in the central nervous system (CNS) are composed of oligodendrocytes, astrocytes and microglia. They contribute more than half of the total cells of the CNS, and are essential for neural development and functioning. Studies on the fate specification, differentiation, and functional diversification of glial cells mainly rely on the proper use of cell- or stage-specific molecular markers. However, as cellular markers often exhibit different specificity and sensitivity, careful consideration must be given prior to their application to avoid possible confusion. Here, we provide an updated overview of a list of well-established immunological markers for the labeling of central glia, and discuss the cell-type specificity and stage dependency of their expression.


Asunto(s)
Neuroglía/metabolismo , Sistema Nervioso Central , Oligodendroglía/metabolismo , Astrocitos/metabolismo , Microglía
12.
Neuroscience Bulletin ; (6): 213-244, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971539

RESUMEN

Nerve regeneration in adult mammalian spinal cord is poor because of the lack of intrinsic regeneration of neurons and extrinsic factors - the glial scar is triggered by injury and inhibits or promotes regeneration. Recent technological advances in spatial transcriptomics (ST) provide a unique opportunity to decipher most genes systematically throughout scar formation, which remains poorly understood. Here, we first constructed the tissue-wide gene expression patterns of mouse spinal cords over the course of scar formation using ST after spinal cord injury from 32 samples. Locally, we profiled gene expression gradients from the leading edge to the core of the scar areas to further understand the scar microenvironment, such as neurotransmitter disorders, activation of the pro-inflammatory response, neurotoxic saturated lipids, angiogenesis, obstructed axon extension, and extracellular structure re-organization. In addition, we described 21 cell transcriptional states during scar formation and delineated the origins, functional diversity, and possible trajectories of subpopulations of fibroblasts, glia, and immune cells. Specifically, we found some regulators in special cell types, such as Thbs1 and Col1a2 in macrophages, CD36 and Postn in fibroblasts, Plxnb2 and Nxpe3 in microglia, Clu in astrocytes, and CD74 in oligodendrocytes. Furthermore, salvianolic acid B, a blood-brain barrier permeation and CD36 inhibitor, was administered after surgery and found to remedy fibrosis. Subsequently, we described the extent of the scar boundary and profiled the bidirectional ligand-receptor interactions at the neighboring cluster boundary, contributing to maintain scar architecture during gliosis and fibrosis, and found that GPR37L1_PSAP, and GPR37_PSAP were the most significant gene-pairs among microglia, fibroblasts, and astrocytes. Last, we quantified the fraction of scar-resident cells and proposed four possible phases of scar formation: macrophage infiltration, proliferation and differentiation of scar-resident cells, scar emergence, and scar stationary. Together, these profiles delineated the spatial heterogeneity of the scar, confirmed the previous concepts about scar architecture, provided some new clues for scar formation, and served as a valuable resource for the treatment of central nervous system injury.


Asunto(s)
Ratones , Animales , Gliosis/patología , Cicatriz/patología , Traumatismos de la Médula Espinal , Astrocitos/metabolismo , Médula Espinal/patología , Fibrosis , Mamíferos , Receptores Acoplados a Proteínas G
13.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 710-720, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1010983

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly people. In particular, increasing evidence has showed that astrocyte-mediated neuroinflammation is involved in the pathogenesis of PD. As a precious traditional Chinese medicine, bear bile powder (BBP) has a long history of use in clinical practice. It has numerous activities, such as clearing heat, calming the liver wind and anti-inflammation, and also exhibits good therapeutic effect on convulsive epilepsy. However, whether BBP can prevent the development of PD has not been elucidated. Hence, this study was designed to explore the effect and mechanism of BBP on suppressing astrocyte-mediated neuroinflammation in a mouse model of PD. PD-like behavior was induced in the mice by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (30 mg·kg-1) for five days, followed by BBP (50, 100, and 200 mg·kg-1) treatment daily for ten days. LPS stimulated rat C6 astrocytic cells were used as a cell model of neuroinflammation. THe results indicated that BBP treatment significantly ameliorated dyskinesia, increased the levels of tyrosine hydroxylase (TH) and inhibited astrocyte hyperactivation in the substantia nigra (SN) of PD mice. Furthermore, BBP decreased the protein levels of glial fibrillary acidic protein (GFAP), cyclooxygenase 2 (COX2) and inducible nitric oxide synthase (iNOS), and up-regulated the protein levels of takeda G protein-coupled receptor 5 (TGR5) in the SN. Moreover, BBP significantly activated TGR5 in a dose-dependent manner, and decreased the protein levels of GFAP, iNOS and COX2, as well as the mRNA levels of GFAP, iNOS, COX2, interleukin (IL) -1β, IL-6 and tumor necrosis factor-α (TNF-α) in LPS-stimulated C6 cells. Notably, BBP suppressed the phosphorylation of protein kinase B (AKT), inhibitor of NF-κB (IκBα) and nuclear factor-κB (NF-κB) proteins in vivo and in vitro. We also observed that TGR5 inhibitor triamterene attenuated the anti-neuroinflammatory effect of BBP on LPS-stimulated C6 cells. Taken together, BBP alleviates the progression of PD mice by suppressing astrocyte-mediated inflammation via TGR5.


Asunto(s)
Humanos , Ratones , Ratas , Animales , Anciano , Persona de Mediana Edad , Enfermedad de Parkinson/patología , Astrocitos/patología , Polvos/uso terapéutico , Ursidae/metabolismo , FN-kappa B/metabolismo , Enfermedades Neuroinflamatorias , Enfermedades Neurodegenerativas/metabolismo , Ciclooxigenasa 2/metabolismo , Lipopolisacáridos/farmacología , Bilis , Ratones Endogámicos C57BL , Microglía , Modelos Animales de Enfermedad
14.
Rev. Fac. Odontol. (B.Aires) ; 38(90): 29-37, 2023. ilus, tab
Artículo en Español | LILACS | ID: biblio-1553776

RESUMEN

Esta revisión busca proporcionar a los profesionales de la salud una mayor comprensión del dolor para su actividad clínica-asistencial. Basados en la hipóte-sis de neuroplasticidad presentada inicialmente por Ramón y Cajal y la teoría de la compuerta en la vía dolorosa presentada por Melzack y Wall, se ha ela-borado una revisión bibliográfica con el objetivo de abordar la modulación de la vía nociceptiva desde un punto de vista fisiopatológico. Asimismo, se presen-tan los principales resultados obtenidos durante los últimos años en nuestro laboratorio usando ratas Wistar hembras como modelo de dolor experimental. Finalmente, se describe un circuito original de modu-lación central a nivel del subnúcleo caudal del trigé-mino con una visión integral de los componentes del sistema nociceptivo orofacial, para ayudar al clínico a comprender situaciones de sensibilización central con perpetuación del dolor y cómo paulatinamente el sistema nervioso central pone en marcha un sistema de modulación para adaptarse y alcanzar un estado similar al basal (AU)


This review aims to provide health professionals with a better understanding of pain for their clinical-care activity. Based on the neuroplasticity hypothesis initially presented by Ramón and Cajal, and the gate theory in the pain pathway presented by Melzack and Wall, a literature review has been carried out with the aim of addressing the modulation of the nociceptive pathway from a pathophysiological point of view. The main results obtained in recent years in our laboratory using female Wistar rats as an experimental pain model are also presented. Finally, an original central modulation circuit at the level of the caudal trigeminal subnucleus is described with a comprehensive view of the components of the orofacial nociceptive system, to help the clinician to understand situations of central sensitization with perpetuation of pain and how the central nervous system gradually sets in motion a modulation system to adapt and reach a state similar to the basal one (AU)


Asunto(s)
Humanos , Animales , Ratas , Dolor/fisiopatología , Sistema Nervioso Central/fisiología , Nocicepción/fisiología , Plasticidad Neuronal/fisiología , Astrocitos , Ratas Wistar , Hiperalgesia/fisiopatología , Interneuronas
15.
China Journal of Chinese Materia Medica ; (24): 1031-1038, 2022.
Artículo en Chino | WPRIM | ID: wpr-928023

RESUMEN

This study aims to explore the pharmacodynamic effect of baicalin on rat brain edema induced by cerebral ischemia reperfusion injury and discuss the mechanism from the perspective of inhibiting astrocyte swelling, which is expected to serve as a refe-rence for the treatment of cerebral ischemia with Chinese medicine. To be specific, middle cerebral artery occlusion(suture method) was used to induce cerebral ischemia in rats. Rats were randomized into normal group, model group, high-dose baicalin(20 mg·kg~(-1)) group, and low-dose baicalin(10 mg·kg~(-1)) group. The neurobehavior, brain index, brain water content, and cerebral infarction area of rats were measured 6 h and 24 h after cerebral ischemia. Brain slices were stained with hematoxylin and eosin(HE) for the observation of pathological morphology of cerebral cortex after baicalin treatment. Enzyme-linked immunosorbent assay(ELISA) was employed to determine the content of total L-glutathione(GSH) and glutamic acid(Glu) in brain tissue, Western blot to measure the content of glial fibrillary acidic protein(GFAP), aquaporin-4(AQP4), and transient receptor potential vanilloid type 4(TRPV4), and immunohistochemical staining to observe the expression of GFAP. The low-dose baicalin was used for exploring the mechanism. The experimental results showed that the neurobehavioral scores(6 h and 24 h of cerebral ischemia), brain water content, and cerebral infarction area of the model group were increased, and both high-dose and low-dose baicalin can lower the above three indexes. The content of GSH dropped but the content of Glu raised in brain tissue of rats in the model group. Low-dose baicalin can elevate the content of GSH and lower the content of Glu. According to the immunohistochemical staining result, the model group demonstrated the increase in GFAP expression, and swelling and proliferation of astrocytes, and the low-dose baicalin can significantly improve this situation. The results of Western blot showed that the expression of GFAP, TRPV4, and AQP4 in the cerebral cortex of the model group increased, and the low-dose baicalin reduce their expression. The cerebral cortex of rats in the model group was severely damaged, and the low-dose baicalin can significantly alleviate the damage. The above results indicate that baicalin can effectively relieve the brain edema caused by cerebral ischemia reperfusion injury in rats, possibly by suppressing astrocyte swelling and TRPV4 and AQP4.


Asunto(s)
Animales , Ratas , Acuaporina 4/genética , Astrocitos , Edema Encefálico/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Flavonoides , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Ratas Sprague-Dawley , Reperfusión , Canales Catiónicos TRPV/uso terapéutico
16.
Neuroscience Bulletin ; (6): 359-372, 2022.
Artículo en Inglés | WPRIM | ID: wpr-929095

RESUMEN

Irritable bowel syndrome is a gastrointestinal disorder of unknown etiology characterized by widespread, chronic abdominal pain associated with altered bowel movements. Increasing amounts of evidence indicate that injury and inflammation during the neonatal period have long-term effects on tissue structure and function in the adult that may predispose to gastrointestinal diseases. In this study we aimed to investigate how the epigenetic regulation of DNA demethylation of the p2x7r locus guided by the transcription factor GATA binding protein 1 (GATA1) in spinal astrocytes affects chronic visceral pain in adult rats with neonatal colonic inflammation (NCI). The spinal GATA1 targeting to DNA demethylation of p2x7r locus in these rats was assessed by assessing GATA1 function with luciferase assay, chromatin immunoprecipitation, patch clamp, and interference in vitro and in vivo. In addition, a decoy oligodeoxynucleotide was designed and applied to determine the influence of GATA1 on the DNA methylation of a p2x7r CpG island. We showed that NCI caused the induction of GATA1, Ten-eleven translocation 3 (TET3), and purinergic receptors (P2X7Rs) in astrocytes of the spinal dorsal horn, and demonstrated that inhibiting these molecules markedly increased the pain threshold, inhibited the activation of astrocytes, and decreased the spinal sEPSC frequency. NCI also markedly demethylated the p2x7r locus in a manner dependent on the enhancement of both a GATA1-TET3 physical interaction and GATA1 binding at the p2x7r promoter. Importantly, we showed that demethylation of the p2x7r locus (and the attendant increase in P2X7R expression) was reversed upon knockdown of GATA1 or TET3 expression, and demonstrated that a decoy oligodeoxynucleotide that selectively blocked the GATA1 binding site increased the methylation of a CpG island in the p2x7r promoter. These results demonstrate that chronic visceral pain is mediated synergistically by GATA1 and TET3 via a DNA-demethylation mechanism that controls p2x7r transcription in spinal dorsal horn astrocytes, and provide a potential therapeutic strategy by targeting GATA1 and p2x7r locus binding.


Asunto(s)
Animales , Ratas , Astrocitos/metabolismo , Desmetilación del ADN , Epigénesis Genética , Factor de Transcripción GATA1/metabolismo , Inflamación/metabolismo , Oligodesoxirribonucleótidos/metabolismo , Ratas Sprague-Dawley , Receptores Purinérgicos P2X7/metabolismo , Dolor Visceral/metabolismo
17.
Neuroscience Bulletin ; (6): 474-488, 2022.
Artículo en Inglés | WPRIM | ID: wpr-929086

RESUMEN

Astrocytes are increasingly recognized to play an active role in learning and memory, but whether neural inputs can trigger event-specific astrocytic Ca2+ dynamics in real time to participate in working memory remains unclear due to the difficulties in directly monitoring astrocytic Ca2+ dynamics in animals performing tasks. Here, using fiber photometry, we showed that population astrocytic Ca2+ dynamics in the hippocampus were gated by sensory inputs (centered at the turning point of the T-maze) and modified by the reward delivery during the encoding and retrieval phases. Notably, there was a strong inter-locked and antagonistic relationship between the astrocytic and neuronal Ca2+ dynamics with a 3-s phase difference. Furthermore, there was a robust synchronization of astrocytic Ca2+ at the population level among the hippocampus, medial prefrontal cortex, and striatum. The inter-locked, bidirectional communication between astrocytes and neurons at the population level may contribute to the modulation of information processing in working memory.


Asunto(s)
Animales , Humanos , Ratones , Astrocitos , Hipocampo/fisiología , Memoria a Corto Plazo/fisiología , Neuronas/fisiología , Dinámica Poblacional
18.
Neuroscience Bulletin ; (6): 47-68, 2022.
Artículo en Inglés | WPRIM | ID: wpr-929080

RESUMEN

Human cortical radial glial cells are primary neural stem cells that give rise to cortical glutaminergic projection pyramidal neurons, glial cells (oligodendrocytes and astrocytes) and olfactory bulb GABAergic interneurons. One of prominent features of the human cortex is enriched with glial cells, but there are major gaps in understanding how these glial cells are generated. Herein, by integrating analysis of published human cortical single-cell RNA-Seq datasets with our immunohistochemistical analyses, we show that around gestational week 18, EGFR-expressing human cortical truncated radial glial cells (tRGs) give rise to basal multipotent intermediate progenitors (bMIPCs) that express EGFR, ASCL1, OLIG2 and OLIG1. These bMIPCs undergo several rounds of mitosis and generate cortical oligodendrocytes, astrocytes and olfactory bulb interneurons. We also characterized molecular features of the cortical tRG. Integration of our findings suggests a general picture of the lineage progression of cortical radial glial cells, a fundamental process of the developing human cerebral cortex.


Asunto(s)
Humanos , Astrocitos , Diferenciación Celular , Corteza Cerebral , Neuroglía , Oligodendroglía
19.
Clin. biomed. res ; 42(4): 397-404, 2022.
Artículo en Portugués | LILACS | ID: biblio-1516673

RESUMEN

A Doença de Alzheimer (DA) consiste em um grande problema de saúde pública no Brasil e no mundo. Trata-se de uma doença neurodegenerativa, em que ocorre perda progressiva de neurônios e atrofia das regiões cerebrais. Essa degeneração está associada principalmente ao depósito de duas proteínas tóxicas: a proteína beta-amiloide e a proteína Tau, uma vez que estas proteínas se encontram acumuladas, elas prejudicam a ocorrência de sinapses nervosas. Apesar de extremamente prevalente na população mais idosa, suas causas ainda não estão bem esclarecidas, sendo que vários fatores já foram apontados como possíveis motivos para o surgimento do depósito destas proteínas, levando assim a neurodegeneração. Recentemente, tem se estudado o papel da inflamação, que é fundamental durante todo o curso da doença, tanto para a eliminação das proteínas tóxicas quanto para a proteção de neurônios. Um funcionamento anormal do processo inflamatório poderia dificultar a eliminação das proteínas e acentuar a perda neuronal. Com isso essa revisão de literatura tem como objetivo descrever os principais fatores imunológico que se encontram alterados na Doença de Alzheimer e como isso pode contribuir para o quadro neurodegenerativo.


Alzheimer's Disease (AD) is a major public health problem in Brazil and worldwide. It is a neurodegenerative disease, in which there is a progressive loss of neurons and atrophy of brain regions. This degeneration is mainly associated with the deposition of two toxic proteins, the beta-amyloid protein and the Tau protein, once these proteins are accumulated, they impair the occurrence of nerve synapses. Despite being extremely prevalent in the older population, its causes are still not well understood, and several factors have already been pointed out as possible reasons for the emergence of the deposit of these proteins, thus leading to neurodegeneration. Recently, the role of inflammation, which is fundamental throughout the course of the disease, has been studied, both for the elimination of toxic proteins and for the protection of neurons. An abnormal functioning of the inflammatory process could hinder the elimination of proteins and accentuate the neuronal loss Thus, this literature review aims to describe the main immunological factors that are altered in Alzheimer's Disease and how this can contribute to the neurodegenerative picture.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Enfermedades Neuroinflamatorias/complicaciones , Astrocitos , Microglía
20.
Int. j. morphol ; 39(3): 920-927, jun. 2021.
Artículo en Español | LILACS | ID: biblio-1385395

RESUMEN

RESUMEN: El trastorno del espectro autista (TEA) se caracteriza por presentar déficits persistentes en la comunicación y en la interacción social. Además, patrones de comportamiento, intereses o actividades de tipo restrictivo o repetitivo. Su etiología es compleja y heterogenia, y los mecanismos neurobiológicos que dan lugar al fenotipo clínico aún no se conocen por completo. Las investigaciones apuntan a factores genéticos y ambientales que afectan el cerebro en desarrollo. Estos avances coinciden con un aumento en la comprensión de las funciones fisiológicas y el potencial patológico de la neuroglia en el sistema nervioso central (SNC) que llevó a la noción de la contribución fundamental de estas células en el TEA. Así, el objetivo de este artículo fue revisar brevemente los factores de riesgo clave asociados al TEA y luego, explorar la contribución de la neuroglia en este trastorno. Se destaca el rol de los astrocitos, los microglocitos y los oligodendrocitos en el control homeostático del SNC, en la regulación inmunitaria del cerebro y en la mielinización axonal, así como el mal funcionamiento y las alteraciones morfológicas de estas células en los cerebros autistas.


SUMMARY: Autism spectrum disorder (ASD) is characterized by persistent deficits in communication and social interaction, as well as restrictive or repetitive activities or interests. Its etiology is complex and heterogeneous, and the neurobiological mechanisms that give rise to the clinical phenotype are not yet fully understood. Research points to genetic and environmental factors that affect the developing brain. These advances are consistent with an enhanced understanding of the physiological functions and pathological potential of neuroglia in the central nervous system (CNS) which supports the conclusion of the contribution of these cells in ASD. Therefore, the objective of this article was to briefly review the key risk factors associated with ASD and then explore the contribution of glia in this disorder. The role of astrocytes, microgliocytes and oligodendrocytes in the homeostatic control of the CNS in the immune regulation of the brain and in axonal myelination, as well as malfunction and morphological alterations of these cells in autistic brains are emphasized.


Asunto(s)
Humanos , Neuroglía/patología , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/patología , Oligodendroglía/patología , Astrocitos/patología , Microglía/patología , Trastorno del Espectro Autista/etiología , Homeostasis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA